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S U M M A R Y  
The criterion for the plastic flow of crystalline solids is well established but  a similar criterion for the fracture of brittle 
solids under triaxial stress conditions has not  been proposed so far. According to the present theory, brittle fiacture 
occurs as the result of the formation and subsequent  propagation of microcracks. In this paper it is shown that the 
thermodynamic  criterion for crack propagation is not  a sufficient one and leads to unsatisfactory results in the general 
case. The necessary and sufficient criterion that  there mus t  be a local stress sufficient to rupture the atomic bonds at 
the edge of the crack does lead to satisfactory results. Griffith's crack is taken as a model and a calculation is carried 
out  for the following boundary  conditions: (1) at large distance from the crack there is an arbitrary plane stress or 
strain field ; (2) at the crack boundary  the crack surface is free from traction. This theory leads to a parabolic relationship 

.c~2 +4K'.c22 = 4 K  '2 

between the shear stress %2 and the normal stress z22 acting on the plane containing the propagating Griffith crack. 

1. Introduction 

The theory of brittle fracture has been developed by Griffith [1] and subsequently by others 
in terms of the propagation and formation ofmicrocracks in solids. In most of these works, the 
authors considered fractures under the condition ofuniaxial tension only. But it is well known 
that some important brittle solids develop shear fractures, often when the three principal 
stresses are compressive. One should therefore consider the problem of formation and propaga- 
tion of microcracks in bodies under the most general conditions. A microcrack will propagate 
when the stresses are sufficient to rupture the atomic bonds at the edge of the crack. The calcula- 
tion of the strength of the atomic bonds is not a straightforward one and an alternative thermo- 
dynamic approach was initiated by Griffith [1]. According to thermodynamics the condition 
for crack propagation can be deduced from the condition that there should be a reduction of 
the Gibb's free energy G of the system consisting of the body containing the crack together with 
the straining agent. However, on physical grounds it is obvious that the thermodynamic 
condition may not be a sufficient one. In this paper we imagine the body to be filled with identi- 
cal small cracks which pierce the plane of the body and which have a cross section in the form 
of  an ellipse parallel to this plane, the ratio of the minor to the major axis of the ellipse being 
very small. The cracks are supposed to be spaced sufficiently far apart, so that the presence of 
other cracks has only a minor effect on the stress field around any particular crack. Tractions 
are applied to the body so as to produce an arbitrary but uniform condition of plane strain or 
plane stress at points sufficiently far from the cracks. The orientation of the ellipse axes of the 
cracks are supposed to have a random distribution with respect to the axes of the uniform 
principal stresses produced by the applied tractions. The conditions are calculated at which 
rupture will occur at the surface of similarly oriented cracks. This latter process has been 
described as the propagation of cracks. 

If the parameters describing the cracks, namely the length of the crack and the radius of 
curvature of its apex are sufficiently large compared with the equilibrium interatomic distance 
b it is clear that the stresses and displacements calculated by the mathematical theory of elastic- 
ity will not be strongly dependent upon the arrangement of atoms around the crack. Also, 
Inglish [2] and Neuber [3] have pointed out that the stress concentration produced by a long 
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narrow crack depends on the length of the crack and the radius of curvature of its apices but it is 
very little dependent on the precise shape of the crack at points some distance away from the 
apices. The results given in this paper are therefore certainly valid. 

As the radius of curvature of the apex of the crack takes smaller and smaller values a stage is 
reached at which the arrangement of atoms in and around the crack surface and especially near 
the apex of the crack cannot be ignored. Stress and strain do not  vary continuously. Within the 
small volume of approximately b 3 between pairs of atoms, the stress and strain may be regarded 
as constant and the changes of stress and strain between neighbouring small volumes are 
discontinuous. If the change of stress and strain over distances of the order of b measured 
from a given point are a small portion of the mean value in the neighbourhood of the point then 
the error in the stress and strain at the point calculated from continuum theory of elasticity will 
be small. In the case of sharp cracks in a real solid the maximum tensile stress must not exceed 
the maximum tensile interatomic force per unit area which is denoted by T. 

As the radius of curvature of the apex tends to zero, an elliptic crack becomes a slit crack 
(i.e. a part of a plane across which tensile stresses are not transmitted). The limiting case among 
real cracks is that of a cleavage crack, formed by the splitting apart of planes of atoms which 
were formerly bonded together. But when tensile tractions are applied to the body, infinite 
tensile stresses appear at the apices of the crack. This makes the problem difficult. 

Elliot [4] considered the case of a slit crack separating two parallel planes of atoms in a large 
body subject to a tensile stress acting normal to the crack, which is uniform at a large distance 
from the crack. He established the condition for rupture (i.e. propagation of the crack) as that 
the maximum tensile force per unit area acting on the planes of atoms closest to the surface of 
a crack must be equal to the maximum tensile interatomic force per unit area T. He found a 
value of T b y  using the fact that the area under thef (x2)  curve is equal to twice the surface 
energy v wheref(x2) is the force per unit area between atom planes at a distance x2 apart. 

Barenblatt [5] has shown that if one of the boundary conditions is that the stress is constant 
across a region of the plane of the slit crack, then there is a value for the width of the region 
which is such that the stress at the edge of the region does not become infinite. He showed that 
the condition for the stresses to be non-singular is that they correspond to a minimum of the 
potential energy of the system with respect to variations of the parameters of the system (crack 
length, width of constant stress region, value of constant stress). His condition, therefore, 
determines the equilibrium configuration of the crack under given applied tractions and not 
for the propagation of cracks. 

The works of Leonov and Onyshko [9], Neuber [3], Orwan [6], Cottrell [7, 8] suggest that 
a cleavage crack may be represented either by a slit crack with regions of uniform stress at its 
tips or by a narrow elliptic crack with a finite radius of curvature p at its tips and the value ofp  
will be at least 0.81b. 

2. Condition for propagation of a crack 

A crack will propagate when the maximum stress at its edge reaches a value sufficient to rupture 
the atomic bonds there. The surface energy v was defined by Elliott [4] as 

2v -- f ( x2 )dxa  , (2.1) 
�9 b 

where f ( x2 )  is the force per unit area between atom planes at a distance x2 apart. He derived 
the following expression for the maximum tensile interatomic force per unit area for isotropic 
solids having Poisson's ratio q = 0.25, 

A similar equation was given by Orowan [6]. Calculation of a crack propagation condition is 
therefore reduced to finding the value of the maximum tensile stress at the crack edge and 
equating this to T. 
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In the thermodynamical approach, we require to calculate the change in Gibb's free energy 
G of the system for a virtual propagation of the crack. Three terms contribute to AG in an 
isothermal process of this type. These terms are the elastic energy U stored in body, the potential 
energy W of the external forces applied to the body and the surface energy vS of the body 
(where S is the total surface area of the body). During the application to the body of loads 
which do not exceed the critical load required to propagate the crack there is no change in G 
since the increase of the elastic energy U is exactly equal to the decrease of the potential energy 
of the external forces W, and the surface energy does not  change. But as soon as the critical load 
is reached all three energy terms may change. Two cases may be distinguished : (a) the applied 
load remains constant while the crack propagates, in which case there is an increase of the 
elastic energy U and vS and the external forces perform work on the body, so that W decreases; 
(b) the external boundaries of the body remain fixed, so that the external forces do no further 
work, i.e. W does not change, and in this case there is a decrease of elastic energy U and an 
increase of vS. We consider the case (a). We consider a plane body with a crack piercing it and 
denote the surface of the crack by SA and the external surface of the body by $2. We consider 
two states of the body. In state I, certain surface tractions are applied to $2 and a set of tractions 
is applied to $1, so that the body deforms as though no crack were present. In state II, the same 
set of tractions are applied to S 2 but no tractions are applied to S 1. The elastic energy will be 
denoted by U, surface tractions or stresses by zij, the corresponding displacements are denoted 
by ui, and the projected area of the small surface ds in the j th direction is denoted by dsj. 
The tensor notation is used and the suffixes i and j  can take values 1, 2 or 3. The superscripts I 
and II indicate the values of the quantities in states I and II, respectively. 

2 ~ S  2 (outer edge of plate) 

TI 

Figure 1. A crack ($1) in a plane body subjected to principal stresses TI and T2. 

The elastic potential energy of a body is given by (Love [10]) 

1 M s U = ~ "ci~uids ~ , (2.3) 

where the integral is taken over the entire surface of the body and the tractions and dis- 
placements are given by their final values. By the Rayleigh-Betti  reciprocal theorem we have 
[as] 

is 1.( s (z,~)"(u,)' dsj (2.4) 1 (.~ij)I (ul)ildsj = ~ 
2 l+s2 l+sz 

The boundary conditions 

((zi3l)s2 = (('~i~I1)s 2 , ((T/j) I' dsj)s~ = 0 ,  (2.5) 

together with equations (2.3) and (2.4) finally give an expression for the increase of the elastic 
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potential energy of the body produced by the relaxation to zero of the tractions applied to the 
crack in state I, 

U (c) = U ' ! -  U' - 1 ( (zlj)' [ (ul)I+ (u~)"] dsj. (2.6) 
2 .s, 

This is not quite the same thing as the increase of the elastic potential energy of the body 
produced by the presence of the traction-free crack, which is 

1 
f (zij)' (ui)n dsj, (2.7) V I I -  V(O) = - -  ~ s1 

where U(O) is the strain energy of theuncracked body given by 

1 
.I (zO)' (ui)' dsj (2.8) v ( o )  = =2 

U(c) and U n are functions of the size and shape of  the crack. The parameter determining the 
size of the crack may be taken as the length 2c (of its major diameter) which we shall call the 
crack length. If there is a virtual increase of crack length of amount  2A c, with ((z0~)s2 and there- 
fore ((zJt)sl  remaining constant, then there is an increase of the strain energy of the body 
which is given by 

0 
f ( 0'(u0 'Id=  A u n =  - lz A c ~cc s l 

f ' ,, = - � 8 9  ~ I Z i j ) \ ( . ~ ) d s j ,  (2.9) 
.St 

since U(0) and zij are indepemtent of c. The external forces do an amount of work which is 
given by 

From (2.10) it is readily deduced that 

- = - j Z A U "  . (2.11) 
1 

The surface energy of the body increases by an amount 

~S 6~S 1 (2.12) v AS = v Ac ~c = v Ac Oc 

Thus from (2.9), (2.11) and (2.12) we find that the change in the Gibb's free energy of the body 
for a virtual increase of the crack length is given by 

AG = A W + A U n + v A S  

= - A U I I + v A S  

,,,,,,u,,,,,,,+v<7 = ~cc , & , j  Ac. (2.13) 

For the crack to extend, we have AG <~ O, i.e. 

1 ~ .i (zJ(u')IIds~+v 0Sx ~< 0.  (2.14) 
2 0c s, 

3. Condition for the propagation of Griffith's elliptic crack under plane strain 

Let us now consider the case of an elliptic crack. We use elliptic co-ordinates (~, fl) defined by 
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the transformation formulae 

z = x ,  + i x 2  = c cosh(c~+i//) = c cosh ~ ~, 
(3.1) / X l = C C o s h e c o s / / ,  x 2 = c s i n h c ~ s i n / /  

The major axis is taken as x 1-axis and the x3-axis is normal to the plane of the body. The curve 
s = constant is the ellipse 

x 2 xz 2 
+ cZ - 1 (3.2) c z cosh 2 s sinh z c~ ' 

and the elliptic hole has the equation e = %. 
Let T~ and T 2 be the uniform principal stresses at infinity making angles 0 and 0 + n/2, 

respectively, with the major axis of the hole. The stresses are then given by (Love [10]) 

"Cll = I ( T  1 § T2) +�89 - 7"2) cos 20, 

z:2 = �89 + Tz)-�89 - 7"2) cos 20,  (3.3) 

z12 = �89 1 - T2) sin 20. 

When there is no hole in the body, Airy's stress function is known to be (Love [10]) 

1 2 1 2 
' r 2 2 ~ X  I §  2 . (3.4) 

The displacements are given by 

1 / 
. 1  = 

(3.5) 

1 l u2 = ~ [ - z l a X z  +'C12xl + ( z l l + Z z / ) ( 1 - t / ) x 2 ]  

where/~ is the shear modulus. 
We can now find expressions for the stresses and displacements in elliptic co-ordinates 

(s,//, x3). These are (Timoshenko and Goodier  [14]) 

%~(%) = �88 2 ho [ ( Z l l -  z22)(cosh 2% cos 2 / / - 1 ) +  2r~2 sinh 2% sin 2//] 

+�89 

~p~(ao) = - �88  [ ( z l1 -%2)  (cosh 2s o cos 2 / / - 1 ) +  2z12 sinh 2s o sin 2//] 

z,~ (~ o) = �88 ho [ (r 22 - z11) sinh 2% sin 2/ /+ 2z 1 a (1 - co sh 2s o cos 2//)] ,  

C 2 h o 
u~ (%) = ~ [ (Zax + z22) sinh 2% (1 - 21/) + (zll - z22) sinh 2e o cos 2// 

§ 2"C12 cosh 2s o sin 2/ / ] ,  (3.6) 

cZh~ [ - ( 1 - 2 t / ) ( z l ~  +z22) sin 2 / / - ( Z l l - % 2 )  cosh 2% sin 2// u~(So) = 8~ 

+ 2zaz sinh 2% cos 2//] . 

The modulus of transformation h is given by 

h = {�89 2 (cosh 2 s - c o s  2//)}-~,  

and h o is the value of h when s =  %. 
We shall now transform (2.6) and (2.14) in elliptic co-ordinates (Love [10]): 
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U ( c )  = - 5 

1 

2 .is~ 

d~dx 3 I I I1 I 1 [G~(us+us)§ h 

[@ss I II I dfidx3 
( u s +  u s ) +  .... I/ " (3.7) 

Since S 1 is the crack surface for which e = a o  (=constant) ,  the first of these integrals is zero, 
and finally carrying out the integration with respect to x3 from 0 to l, we get 

1 t I I 11 I I II d fl 
V ( c )  = - J . (3.8) 

~0 

Similarly (2.14) becomes 

l ~ f l II l l I ~  6~S1 
2 ac [Gsu~+G, us] + V~c c <~ O. (3.9) 

so 

The values ofu~, u~, v~ for c~ = % are given by (stress and displacement at the hole, Poschl [11] ) 

~p (~o) = (Tx + T2) sinh 2e o - (T 2 - 7"1) {cos 20 - e 2s~ cos 2 (3 - 0)} 
cosh 2~ o - c o s  2fl 

II ( l - r / )  [(Vl+r2)+(y2_Zl)e2SOcos20(  1 1 2,2 - ~ c  no sinh 2~o)], us (C~o) - 2#ho 

(1-I'/) [(T2_ T1) e2SO (sin 20+�89 cos 20 sin 2fl)]. (3.10) 
u~(c%)- 2#ho 

Or, from (3.3), 
z~p(c%) = (Zll + %2)sinh 2% + ( z l l - r z 2 )  ( 1 - e  2~~ cos 2fl)-2ra2 e 2~~ sin 2fi 

cosh 2 % -  cos 2fl 

u~(~o) _ (1 -r /)  [(rl I +r/2)_(z~1 _zz2)e2~ ~ (1-�89 sin 2~o) ] 
2#ho 

u~(c%) - (1-71) [2Zl2+�89 ) sin 2fl] e 2s~ (3.11) 
2#ho 

The values ofr~s , z~p and u~ for c~= ~o are given by (3.6). Substituting these in (3.8) and integrat- 
ing between the limits f i=0  and f i=2n,  we get 

U ( c ) -  n(1-r/)2# C21('C22§247 " lrZsinh2c%) . (3.12) 

As ~o--*0, corresponding to a narrow crack, we have 

U(c) - n(1-r/)c21(zz2+z22) ' (3.13) 
2# 

for plane stress and 

U(c) = nc2 l(z22 + r~2) (3.14) - (  

for generalised plane stress. Now 

f 
~z/2 

SI = 4cl cosh ao (1 - sech 2 % sin 2 q~)}dq), (3.15) 
dO 

Therefore, as % ~ 0 ,  $1 ~4cl. From (3.9) we get for plane strain 

[ ; ] + V ~ c  c~ (4c)l~<0. (3.16) 
1 0 n(1 r/)cZ(zZz+zZ2) 
2 0c 
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These results show that for a narrow elliptic crack, U (c) or U n depend only on the crack length 
and not on the crack shape %. 

Results (3.13) and (3.14) agree with those of Orowan [6] (uniaxial tension normal to the 
crack z t 2 = 0) and with Start [12] for the case of pure shear (%2 = 0). They also agree in the limit 
with the result given for a more general case by Stroh [13]. 

We now apply the thermodynamic approach as used by Griffith. From (3.16), 

n(a - t / )  c [ ,22+z22] +4v ~< 0 ,  (3.17) 
# 

and if we put *12 =0  (i.e. 0=0)  and %2 = T2 (see (3.3)), we get 

%2 = v2 > \ n ( 1 - ; 7 ) c ]  ' 

as the condition for propagation of Griffith's crack (Orowan [6]). Writing 

( 4v~ _~ (3.19) 

(which is known as Griffith's equation), the equation (3.17) can be written as 

2 2 > K 2 (3.20) T22 +'C12 

Generally we suppose that there are cracks of all orientations with respect to the principal 
stress axes and we have to determine the orientation of the crack for which the term ,2 2 + z~ 2 in 
(3.17) has a maximum value. From (3.3) the maximdm values are given by 

0 = 0 or ~/2.  (3.21) 

Thus r22+z22 has a maximum value T 2 when O=n/2, so that T 1 is normal to the crack, 
T 2 > T 2 ; and a maximum value r 2 when 0 =0,  so that T2 is normal to the crack and T 2 > T 2. 
That  is, it has a maximum value when the stress of greatest magnitude is normal to the crack. 
However, if this stress happens to be compressive, such a crack will not propagate. Thus the 
minimisation of Gibb's free energy, using equation (3.20), does not lead to a satisfactory 
criterion for the propagation of cracks under shear. 

4. Theory of maximum tensile stress close to the tip of the crack 

The stress on a crack of orientation 0 is %e(eo) as given by (3.10). We shall have to solve the 
equation 

(4.1) = o .  

If cracks of all orientations are present in the body and the parameter c% which determines the 
shape of the crack (i.e. the radius of curvature of the crack tip) is independent of 0, then we can 
also determine the orientation of the crack for which the maximum tensile stress is a maximum 
by the help of the equation 

(4.2) 0-O = 0 ,  

giving 

tan 20 = e z~~ sin 23 (4.3) 
e 2~~ cos 2 f l -  1 

Equation (4.1) gives 

sin2[3[_~2(Tl_T2)e~Ox/(cosh2~o-eOs2fl)-(Tt+ T2) sinh 2c%1 = 0 .  (4.4) 
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One solution gives 

/ 3 = 0 , 0 = 0 ,  
another gives 

2(T, + T2~ 2 e-2=o sinh2 2c% cos 2/3 = cosh 2cr o - \ T ~ j  

and 

_ ~4( TI+T2~ 2 - 1} 4 
tan 20 = { \ T ~ - T ~ J  

For  real solutions tan 20 and cos 2/3, we should have 

(4.5) 

(4.6) 

(4.7) 

( T1 + T2) 2 
4 \ ~ 2 - Z ~ j  - 1 >~ 0 or (3T2+T1)(T2+3T1)>~0. (4.8) 

Substituting in (3.11) the values of cos 2/3 and tan 20 given by (4.6) and (4.7), and taking limits 
for c%-*0, assuming T 2 -  Ta > 0 and with the convention that tensile stress is positive, we get 
the maximum tensile stress as follows: 

(i) when 3 T2 + T1 > 0, 

~(~0)m~x = 2T2 % I (4.9) 
0=0 , /3=0  

In this case T2 is always tensile and normal to the crack and the maximum tensile stress occurs 
exactly at the tips of the crack. 

(ii) When 3 T 2 + T1 ~< 0, 

(T2-  T1) 2 
z~  {c%)m, x - 4% (T, + 12) 

cos 20 - 1 T2- T1 (4.10) 
2 71+r; 

sin2fl 2~~ 4(r'+ r2~e\r~-z%) - 1] 

This means that if the maximum tensile stress makes an angle ~0 with the major axis of the crack, 
then 

tan (p = - c o t  20. (4.11) 

The crack with maximum tensile stress will propagate when this stress, given by (4.9) and (4.10), 
reaches a critical value T which is a physical constant for a solid. 

As a particular example of case (a), let us consider the case that the body is subject to uniaxial 
tension. If the measured strength of the body in this case is K' (so that Tg=K' ), then the 
critical tensile stress T=2K'/%. When the maximum stress value given by (4.9) and (4.10) is 
equated to this value of T, we get the condition for crack propagation. This is found to be 

(i) when 3 T 2 q- T 1 ~> 0 : 

T 2 = K ' ,  0 = 0 ,  (4.12) 

(ii) when 3 T g + T l ~  0'  | 

(Ta- T~)g +SK'(T, + T2) "0 I (4.13) 
1 T~-T~ 

cos 20 - 2 V 1 q- T 2 

Now it is known that % = (p/c) ~, where p is the radius of curvature of the ellipse at the ends 
of the major axis (i.e. the radius of the edge of the crack), and therefore from (2.2) and (4.9) 
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2T2"c/P)4-= T =  \ , (  b / '  =0.25), 

or 

= ('l'09vpE-t-~- (4.14) 
T2 ~ bc / 

(b being the equilibrium inter-atomic distance). 
It has been shown by Cottrell [7, 8] that the tips of a real crack will have a finite radius of 

curvature p and the minimum value of p is 0.81b. Putting this value in (4.14) we get 

T 2 (min) = (vE/4.53c) ~ , (4.15) 

compared with Griffith's equation (3.19) obtained by minimising Gibb's free energy for the 
system (with r/= 0.25) 

T 2 = (vE/1.48c) 4 . (4.1.6) 

From (4.15) we get a minimum value of the crack length c. Since T 2 (min) must equal the 
measured tensile strength K', we get from (4.15) 

c (min) = vE/(4.53K'2). (4.17) 

The equation (4.12) corresponds to tensile fracture normal to the major principal stress axis 
and equation (4.13) corresponds to shear cracks inclined to the principal stress axes. The angle 
0 defines the orientation of the crack that propagates and in the case of shear fractures this is 
not necessarily the same as the orientation of the macroscopic fracture surface since the crack 
does not propagate precisely at its tips (see equation (4.11)). It seems likely, as suggested by 
Brace and Bombalakis [14], that shear fractures are necessarily produced by the coalescence 
of a series of cracks, because individual cracks tend to propagate approximately normal to the 
least principal stress. 

The first equation of (4.13) can be written as 

zE2+4K'z22 = 4K '2 . (4.18) 

Equation (4.18) is the envelope of the stress circle in the Mohr diagram [15]. Equation (3.20) is 
represented by a circle of radius K with centre at origin and equation (4.28) is represented by a 
parabola. As long as the distance to any point on the parabola is greater than or equal to K, 
equation (3.20) is satisfied for that point. It can be seen that this is true for all points on the 
parabola if K' >~ K, i.e. if the measured tensile strength is greater than or equal to that given by 

\ 

C r 2iz~2fs2CU~i~re ~ 

f 

"C12 

~ EnetgY 2cri t e~o n 

L- 
' -{- ,C2 2 

Stress criterion 
/ z22+4K"c12=4K'2 

Figure 2. Mohr diagram representing two criteria for crack propagation. 
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Griffith's equation (3.18). The latter condition must apply, since otherwise there would not be 
a decrease of Gibb 's  free energy of the system in this case. Therefore there will always be a 
decrease of Gibb's  free energy of the system when equations (4.12) and (4.13) are satisfied, and 
these equations represent the necessary and sufficient conditions for fracture to occur due to the 
propagat ion of cracks. 

5. Conclusion 

It  is known that the strength of brittle fracture is a function of both deviator stresses and hydro- 
static stress. If  the stresses were tensile then tensile rupture may occur, otherwise the failure 
would be by shear. Mohr  [15] suggested that if the strength of such a material is independent of 
the intermediate principal stress, then the strength is governed by a relationship between the 
shear stress Za2 and the normal stress ~'22 on the plane of rupture or of shear given by 

z12 = f(z22) �9 

Nadai  [16] showed that this relationship is the envelope of the major  principal stress circle in 
Mohr  diagram and the orientation of the plane of rupture or of shear for a given stress circle is 
supposed to be determined by the orientation of the diameter which passes through the point 
of contact with the envelope. 

In the case of brittle fracture, the classic works of Von K a r m a n  [17] showed that the Mohr  
diagram was parabolic. But the reason remained unexplained until recently. It lies in the nature 
of the equations (4.12), (4.13) and (4.18) governing the propagat ion of Griffith's crack. 

Although equations (4.12) and (4.13) are derived for plane strain conditions, the general 
nature of the laws of brittle fracture which they predict is in good agreement for more general 
conditions. 

Hence, using Griffith's crack we have shown that the thermodynamic criterion for crack 
propagat ion is not a sufficient one. The necessary and sufficient criterion is that there should 
occur at the crack edge total stresses which are sufficient to rupture the atomic bonds. Assuming 
that there are cracks of all orientations with respect to the applied principal stress axes, the 
theory leads to a parabolic relationship 

z 2 2 + m K ' z 2 2  = 4K '2 

between the shear stress z12 and the normal  stress z22 acting on the plane containing the crack 
that propagates. The fact that there is more than enough energy available for the crack propa- 
gation process is perhaps the explanation of the phenomenon of explosive shattering of some 
of these materials when they are fractured in compression. 
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